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1. Summary

Complex‘systems such as naval ship structures and offshore platforms are‘exposed

 to severe loadings which over an extended time period can cause damage in the form of

.

sy

fractures and cracks which can ultimately lead to fatigue failures. The work conducted

under this research involved the development of a System Identification technique which
has the potential of detecting and tracking progressive fracture by observed changes in
& the identified'system parameters; mamely the mass [M, damping [C], and stiffness [K]

matrices. Although cracks have long been known to cause changes in resonant

-

frequenc1es, changes in the [M][C][K] matrices appear to be more 51gn1f1cant and hence

E: more detectable. In addition, one might relate the changes in the matrices to changes
N in thé actual physical system. Mathematical theory was developed which; when‘
{} ‘implemented in a computer'algofithm, allows the eigemvalues. and eigenvectors to be
- extracted from the structural response for a known random type forcing function.
a: Knowing the eigenvalues and eigenvectors, the Mllclik] mattices’cén be accurately
m determined. |

Analog computer studies simulating discrete spring—mass—dashpét systems

‘demonstrated that the identified system parameters can be retrieved quite accurately

from response data. Laboratory experiments on a cantilever beam with induced saw cuts

to simulate a propagating crack demonstrated that the effect of crack depth is

manifested in observed changes to the [M}[C][K] matrices as well as changes to the

m

power spectral density and resonant frequencies. Finite element structural analysis of

the cantilever beam also showed detectable changes in the resonant frequencies;

particularly at the higher modes.

—
B
L A logical extension of this research is proposed to correlate damage with changes
=

in the identified system parameters.
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2. Introduction

-
L

| Many ship and offshore structures have a predicted design life which is

generally based on conservative design criteria to compensate for uncertainties

in the load environment and associated damage effects. For example, complex
systems such as naval ship structures and offshore platforms are exposed to
severe wave loading which over an extended period can lead to fatigﬁe failures.
Initiation and propagatioﬁ of cracks’change the struﬁtural response of the
system which manifests itself in a change in the dynamic equations of motion.

The System Identification technique, whereby the dynamic equations of motiomn

can be deduced from experimental data, offers the potential of being able to
detect cracks, flaws, etc. by observed changes in the Identified System

Parameters such as stiffness, mass and damping matrices.

Random decrement system identification and defect correlatiom amalysis of

structural systems offer the prospect of reliably tracking progressive

- pre~catastrophic type damage. It would establish a technology base of truly

a5 ’]

being able to omnly retire flight vehicles for cause rather than their reaching

pdyieiig
§ e

a certain number of flight vehicle hours of use.

The identification and modeling of multi-degree of freedom dynamic systems

. |

through the use of experimental data is a problem of considerable importance in

ié tﬁe area of system dynaﬁics, automatic controls and structural analyéié (1?21).
- Indicative of the wide range of applicability of this squect is a recent
= survey article (4) which contaiﬁs over 130 references related to system énd

parameter identification.

gy

This mathematical model representation may prove to be a very powerful

tool for the analysis and design of complex systems. The mathematical model
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representation could of course be derived from the theoretical knowledge of the

|

system and its components, or from a finite elements model in the case of

4

purely structural systems. These techniques though are inferior compared to

one which is based on actual experimental response data. Furthermore as the

systems become more complex and sophisticated it is becoming more and more
difficult!tb understand their behavior to develop theoretical models to predict

their response.

™
w
o
[

S I |

i

[
H

§

3

i
& i

Gk |

T

i |
Lo

32

€. &



i)‘
b

o

£

B
o

™M

I

&
L22

il B

i
o
Yo

3. Objectives of Study

The objective is to develop new and more accurate dynamic system

identification techniques to determine the dyammic equations of motion from

dynamic response data for systems with high modal demsity. It is desired to
demonstrate that it is feasible to detéct damage in structures from
cracks/flaws by observed changes in the Identified System Parameters such as
the masé M}, stiffness [K] and damping [C] ﬁaffices as well as to ghanges'in
the power spéctral density and resonant frequencies. The ultimate objective of
subsequent research is to correlate the cr#ck/flaw size and location with

observed changes in the System Parameter.
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4. Aggroach

The Basic approach used td identify changes iﬁ’thé System’Parametérs from
damage to the structure is jllustrated in Figure 1. First the mathematical
theory is developed which essentially involves developing the equations of
motion in a form which allowé the eigenValués, eigenvectors, mass matrix [M],
stiffness matrix [K], and damping matrices [C] to be determined from measu:ed
response data. Computer programs were developed to facilitate this using the

time domain technique and frequency domain technique (both te;hniques are

described in this section) to retrieve the eigenvalues, eigenvectors from the
response data, and then use those to éoﬁpute the mass [M], stiffness [K] and
damping [C] matrices. A systematic procedure was u;ed to test the algorithms
to ensure that the eigenvalues, eigenvectoré could be ébcurately retriéved from
the response data by an improved curve fitting and autoregressive techniques
developedvby the University of Maryiand. Analog computer studies were then
‘conducted to demonstrate the aBility of the computer program to retrieve the
system parameters from response data of simulated structures involving spring,
méSs, dashpot systeﬁs. These studies were also designed to demonéﬁrate’that
simulated damage can be detected by changes in the System Parameters. Finally,
experimeﬁtél tests and theoretical finite element analyses were conducted of a
cantilever beam to demonstrate that crack éize does exhibit changes in the
Identified System Parameters which are detectable. Detailed description of all

these tasks are included in the following.

4.1 Mathematical Model of the System Identification Technique

Consider a structural system which can generally be represented by an N
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degree-of—freedoﬁ linear sjstem. Thg dynamics of the syStémbiS‘governed'by its
equation of motion
[M1[X1+0cllX)1+[R1I[X]1=0£]

- s . . .
where [X], [X], [X] are the displacement, velocity and acceleration column
vector of degree N, respectively. [f] is the force column of degree N. M,
[C], [K] are the NxN mass, damping and stiffness matrices, respectively. The
exercise of the system identification involves the identification of [M}, [C],

[K] matrices from the known responses [ﬁ], [i], [X], and the known forcing

function [f].
Adding a trivial differential equation
[Ml1[X1-[¥][X]=0

to the above dynamic equation, we obtain a set of state equations which still

describe the motion of the structural system,

[uf”i{'] (In]nto] _}
+ ‘ :

[c]“fzJ l[oll[K]

[D]Igq ]+[E][q]=[Q],

[o0]

— w—f - -

[M]

- or

where



- fLolitu]
G 1))

|
‘[Hll[c]J

4 ]
2 L.z]=- |
L[olllxlj

After laplace transformation, we obtain

_[B(s)][q(s)]?[Q(a)];

where [ B (3) 1 =1 [D]s + [E] ] is the system matrix.

It can be proved that [D] and [E} can be represented by the eigenvalues, k,

ko -~ and eigenvectors, [Yk], of the system matrix which are determined by the

homogeneous equatlon

[B’(P)][yk]"o

When [M], [C],[K] are all symmetric, the expressions are
VID]=[Y]’HII][Y]"1

[El=[Y ] [ -PlIY ]
where 'Y = [ 71’ yz. y3,v.....,ﬂjn ]>;s the elgenvector matrlx,

| ‘ Y is the elgenvalue matrix.

it can also be shown that the system's transfer function can be represented by

the elgenvectors and elgenvalues,

N ,T .
[H(s)]-[Y](s-P) (1T =3 [ykyk+ Tk I
o L k=1l TP BPf ) -




=
iém’; ; ary . °
The above derivation states the fact that if_one can determine the

i

elgenvalues and eigenvectors of a system, the mass, stiffness and damping

W‘!f
.

matrices of the system are s1mp1y the products of the elgenvalue and

1

k] eigenvector matrices. The elgenvalues and elgenvectors can be obtained from
™ the measured system response data for a known force input using frequency
ke O '

domain technique or a time domain technique.

4,2 System Identification Technique

Implementetion of the Mathematical Model in the System Identification

Technique is illustrated in Figure 2. The random vibrational response of a

structural system‘cbntains the characteristic signal of the structure. Using
E}-_ proper signal processing techniques, the characteristic signal can be retrieved

from the random response. Structural damages can then be identified by

studying the changes of the characteristics signal.

Two signal processing techniques have been developed to retrieve the

structural characteristic signal from the random responses. One technique
E} analyzes the structure signal in the frequency domain, the other in the time

domain.

4,2.1 Frequencv Domain Technique

Structural responses from a known random force 1nput are collected into a

Fast Fourier Transform (FFT) analyzer to obtain the frequency respomse in

digital form. The dlgltlzed frequency responses are curve fitted with a

E} computer program to yield the eigenvalues and eigenvectors. The frequency’
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domain curve fitting program uses a linear-least square method to find the best

fit of the collected system's transfer function to the following theoretical

expression

N a Aa,: *
H(s) = T (— k '_k
k=1 °Pp TP

)

ﬁhere Py and a, are the poles and residues of the transfef function. The poles
are the system's eigenvalues and the residues related to the eigenvectors.
After the eigenvalués and eigenvectors are found, the éystemlidentification
techniques'areiapplied to find the mass,istiffness and damping métricés.’ This

is described later in the report.

-4.,2.2 Time Domain Technique

The time responses of a sfructure system when excited by a random forcing
function is digitized and proceésed with random decremenﬁ technique. The
random decrement signature represents system's characteristics from which the
system's‘modal frequencies and daméing values can Be determined. The details
of the random decrement techmique are described in Appendix I.

The impulse response of a structure system contains the characteristic
‘time function of the system. The frequencies and damping values‘of the impulse

response are the eigenvalues of the system. And, the amplitudes of the impulse

" responses at different locations are the eigenvectors of the system. If one

assumes that the random decrement signatures represent the impulse response
functions of the system, then the frequencies, dampings and relative amplitudes
of the random decrement signatures may be used to represent the eigenvalues and

eigenvectors of the system.

11
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To accurately retrieve the eigenvalues and the eigenvectors, a time domain
curve fitting procedure is applied to the random decrement signatures of the

structure. First, the frequency'and damping value of a random decrement

'51gnature are determlned using the auto-regre531on method. After the frequency

and damping are determined, the random decrement signatures are curve fitted

with the following expression to determine the amplitudes of the signatures.

M
ix(t) =a + T a. e ol sin (w.t + ¢.)
} » o i=1 1 1
where ©; and &i are natural frequency and damping ratio of the i-th mode of
the system. @, and ¢, are the amplitude and phase angle. Again the curve

fitting procedure uses the least square method.

4.3 'Comguter Program Development

A computer program was developed to implement the System Identification
Technique illustrated in Figure 2. The.Program includes a frequency domain
curve fitting program, a random decrement program, a time domain curve fitting
program and a system identification'progrém; The randoﬁ decrement progrem,'
written in Z80 Assembly language, is implemented in a CROMEMCO microcomputer.
The resultlng random decrement signature is transferred to the UNIVAC 1180

computer where the other three programs are located, for subsequent

proce531ng.

" The 1nput to the frequency domain curve fitting program is the
experimental transfer function which is collected using a NICOLET FFT Spectrum
analyzer in which many instantaneous transfer functions are averaged. The

averaged transfer function is transferred to the UNIVAC computer through an

12
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interface microcomputer system. When the frequency domain curve titting

i

program receives the experimental transfer function from the spectrum analyzer

b
B

and the. time domain curve fitting program receives random decrement signatures

of a structure from the random decrement microcomputer, both programs reduce

the input data to yield the system's eigenvalues and eigenvectors. Then, the

!

£ systém identification program will pick up these eigenvalues and eigenvectors
- and reduces them to the system's [M][C][K] matrices. i

E. '

# A . .

Eﬁ 4.4 Performance Test of the Time Domain Algorithm

The time domain approach uses an auto-regressive curve fitting method to

resolve frequencies'and damping values of a multidegree—of-freedom signal

simultaneously. It was successfully tested with theoretical data of the type:

- f(t) = 3z e t o+, ko os -
EJ o Ak cosw, t Bke sine, t, M=3
m

=

The signal simulates the free decay response of a structure or the random

decrement signature of the structural random response. Given various values of

"1

Ty wk, the time function f(t) is fed into the program. The program then

resolves the frequencies and dampings from the time function £(t). The results

are compared with the originally given values of frequencies and dampings.

2 - R
ki 'Many cases have been tested including different sampling rates, time lengths
- and modal separations (Table 1). The program performs very well in all

= theoretical cases.

m
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Table 1

gﬁ . Theoretical Test Cases of the Time Domain Program
3 : : : )
Input frequencies ‘Damping Ratio Resolved f;equencies Damping Ratio
(Normalized to . : (Normalized to
Sampling Rate) Sampling Rate)
%3 ' .03 .05 .07 .01 .03 .05 .07 .01
.15 .25 .35 .01 15 .25 .35 .01
08 .11 .14 .01 08 .11 .14 01 7
.10 .13 .16 .01 .10 .13 .16 .01
.15 .18 .2l 01 .15 .18 .21 " .01
Z .20 .30 .40 .01 .20 .30 .40 .01
bt . . . :
.05 .10 .15 S 01 .05 .10 .15 .01
.08 .13 .18 | .01 ‘ .08 .13 .18 .01
- .15 .20 .25 ‘ .01 15 .20 .25 .01
Lo
Bk
L
3
g%
b
- _
.
oo - | 14
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Due to the numerical truncation error plus the randomness of the real system,

it is necessary to test the performance of the time-domain eigenvalue

" retrieving algorithm under noisy condition. A few test cases have been

conducted whose results are presented below.
A theoretical signal which consists of three sinusoidal waves with

frequencies 1456.3, 2427.2, 3398.1 Hz and damping ratios 1% for all three modes

4
[l

was convolved with a random white noise signal collected from an analog noise
generator with a sampling réte of 9708.74 Hz. The result simulates the random
response of a stfuéture. After the auto-regression of the random decrement
signature, the frequencies andvdémping ratios were resolved. The aécuracies in
the frequency calculation for all three modes are very good, all within 1Z.
Howéver, the calculéﬁions of the damping ratios are less accurate. The error
of the damping ratio of the first mode is 10%, second mode 15%, and third mode
85%Z. This is due to the fact that the added noise is not a white noise so that
it can ﬁot be completély’removed by'the random‘décremént process. The modal

separations of this signal are considered high. The three frequencies are at

"15%, 257 and 357 of the sampling rate.

In the cases where many modes can not be :esolved simultaneously,
filtering process helps reduce the number of modes and improve the accuracy of
the eigenvalue retrieval. A signal of 291.26 Hz, 485.44 Hz, 679.61 Hz (3%, 5%,
7% of thé sampling rate) and damping ratio 1% was convolved with the random
analog noise and filtered with filter band pass from 4.57 to 5.5% df the
sampling rate. The filtered signal contains the dominate mode of 485.44 Hz.

Other spectral modes attribute to the filter and the noise. When the three

‘mode  auto-regression algorithm was applied to the filtered signature, the

15



485.44 Hz distinct mode was picked out and the other two modes were used as

-error compensation. Due to the presence of the noise, the frequency and

damping ratio obtained by using auto-regression method depends on the sampling

-rate and the number of data points used. Based on previous experimental

experience, optimum sampling rate was found to be 3.5 - 7 times the frequen;y
of interest and optimum number of data points was near 128. Using a sampling
rate 3.33 times the frequency, the number of data points 128, the above
filtered signal was resolved by the~three mode auto-regréssioﬁ algorithm. This
xesulted in a frequency 482;86 Hz and damping ratio of 1.025%. = Compared to the

theoretical value, the frequency has 17 accuracy and the damping ratio 1%

aécuracy. Hence we believe the time domain algorithm‘accﬁrately resolves the

frequency and damping values of a mﬁltidegree—of-freedom system.

4,5 Performance Test of the Frequency Domain Algorithm

The frequency domain curve fitting program has successfully tested with

theoretical frequency response functions generated by the following formula:

F(s) = y —
‘k==M 8 TPy
Initially, the eigenvalues P and the residues a, were assigned. The generated
frequency response functions were fed into the frequency domain curve fitting
program. The program resolved the residues and poles a s Py of each mode.

These values when compared to the original assigned values are very accurate.

Detailed testing results are referred to Appendix II.

16
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4.6 Performance Test of the Sys:em Identification Algorithm

TN

~ In order to demonstrate the'ability of the comguter'program'tb'retrieve

‘the system identification pérameters from theoretical response data, a simpie
computer experiment was conducted. Simple spring mass systems as illustrated

" in Figures 3, 4, 5 were‘analyzed. The theoretical response to a random loading
was calculated for known values_of mass, stiffness, and damping values. The%
system's eigenvalues and eigenveétofs were then retrieved usihg the frequency
domain technique with the theoretical response as input. Mass, stiffness, and
damping matrices were determined using the System identification algorithm and
compared with fhe original input values. Excellent agreement was obtained for
all 3 cases studied. This demogstrated that the technique can accurately
retfieve tﬁe system identification parameter even for iarge variations in'masé,

stiffness and damping parameters.

5. Analog Cémguter Experiment
In order to further demonsfrate the feasibility of rétrieving the System
Pérameters from response data, the analog computer was used to simﬁlate
~ response frqm real systems. An anaiog computer syétem was used to simulate the
dynamic respbnse of a two—-degree—of-freedom spring-mass—dashpot system as shown
in.Figuré 4., A schematic of the analog setup is shown in Figure 6. System‘
input parameters can be easily adjusted by changing the resistor values of the
_potentiometers in the analog computer circuit.' The response signéls of the

analog computer contains circuit noise which simulates the natural white noise

contained in the dynamic responses of the real system.

17
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Pig. 5 Three-degrees-of-freedom system (Model 3).
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The dynamic equations of the spring-mass-dashpot system of Fig. 4 are

‘ c. + ¢ c k, + k k
X, = - 1 2 il +‘—Z iz - 2 e +-;2 x,
my m m, m)
L S . | ky + Ky £()
X9 =0 *1 7 % + m X1 m g ¥ m
! ] B2 2 2 2

where mi, mi are masses, s Cys Cg damping constants, ki, kz,’k3 stiffness,

f(t) is the input forcing function at mass 2. Using k, = 1500 1b/ft, kz = 6000

1

= 1500 1b/ft, m = 4 slugs, m2“= 8 slugs, ¢, = 10 1b-sec/ft, c, = 20

3 1 2
lb-sec/ft, ¢y = 30 1b-sec/ft, and applying a random input forcing fumction to

‘mass 2, the displacement transfer function at mass 1 and 2 were obtained as

shown in Fig. 7 and Fig. 8 respectively. These transfer functions were fed

into the frequency domain eigenvalue retrieving program from which the residues

and poles of the systém transfer functions were found as shown in Table 2.

Table 2
Poles and residues of the VeIOCity transfer functions

(1st stage damage)

: 1st Mode 2nd Mode
il Frequency 15.78 50.22

(rad/sec)

Damping Ratio = 0.1802 0.1551

Residues 0.04227 + 10.006686 -0.04111 -‘i0.004233
iz Frequency 15.79 _ 50.23

(rad/sec)

Damping Ratio 0.1796 —0.1541

Residues  0.04426 + i0.008879  0.01880 - i0.000418

21
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When the eigenvalues and eigenvectors were fed into the system identification

- program, the system's [M][C][K] matrices were identified, as shown below

-

™

[}

" 3,944 -0.00492
! slugs
| | -0.000284 ~ 7.88
r [28. 4 ~19.6 ]
e c= : ' ' 1b-sec/ft
< [ -19.6 50.8 _| :
; [ 7477  =5933
‘K = 1b/ft
. L-se33 7452

The exact values of the system's [M][C][K] matrices from theoretical

calculations are

_E} . 4.0 0
3 e _ | = ] slugs

Mtheo. L o 8.0
- 30.0 220.07.
ctheo. = |20.0 . 5o,od. 1b/sec/ft
;, | . [7s00 -6000 ]
| theo. L6000 7500 e

il |

The compariéon between the identified and theoretical values of the M [c][K]
matrices are within 5%. This again demonstrated the ability of the System
Identification Technique to accurately retrieve [M][C][K] matrices from the

‘response data.
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In order to demonstrate the ability to detect system éhanges from
simulated damage, three stages of damage were simulated. Stage 1 was
considered to have characteristics of the system just analyzed. Stages 2 and 3

were as given below:

1

Stage 2 Damage: my = 4.0 slugs, m, = 8.0 slugs

| cl*='40' lb-sec/ft, c, - 20.0 Ib-sec/ft, ¢, = 30.0 lb-sec/ft
k; = 1500 1b/ft, k, = 3000 1b/ft, ky = 1500 1b/ft

Stagé 3 Damage: m = 4.0 slugs, m, = 8.0 slugs
¢; = 10 lb-sec/ft, ¢, = 20.0 lb-sec/ft, cg = 30.0 lb-sec/ft
k, = 1500 1b/fr, k, = 3000 1b/ft, ky = 1500 1b/ft

The poles and residues of the velocity transfer functions for the 2nd and 3rd

stages of damage are listed in table 3 and 4. The corresponding [Ml[cl K]

‘matrices are shown below. Again it is demonstrated that the System
Identification technique using the frequency domain algorithm can accurately
- retrieve the [M][C][K] matrices from response data. Moreover, changes

simulating various stages of damage are detectable.

b
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Table 3

Poles and Residues of the Velocity Transfer Functions

(2nd Stage Damage)

_ lst Mode
Frequency 15.89
(rad/sec)

Damping Ratio 0.1088

Residues 0.04094 + i0.004655
Frequency 15.89

(rad/sec)

Damping Ratio 0.1092

Residues 0.04474 ~ 10.01735

‘ Tablev4

-

2nd Mode
50.58

0.1020

-0.04089 - i0.004923

'50.56

0.1020

0.01865 - i0.003211

Poles and'Reéidues of the Velbcity Transfer Functions

(3rd Stage Damage)

, lst Mode
Frequency 15.85
(rad/sec)
Damping Ratio 0.1109

Residues 0.03958 + i0.004973
Frequency ©.15.85

(rad/sec)

Damping Ratio 0.1103

Residues 0.04697 + i0.004429

27

2nd Mode
37.88
0.1359
0.03944 - 10.006832

37.87

0.1349

0.01645 - i0.004332



[N

E:j 2nd stage éamage: | _
" 4.0 0
' : ' Mt:heo. = 0 8.0 slugs
& ~ 60 -20.0 ]
b Coneo. = 200 “0.0 1b-sec/ft
gl © 7500 | -6000 ]
) K 1b/ft
] e L -6000 7500 _ |
E? - T 3,044 ~0.001989"
M= slugs
- L-o.oo334 7.934
i r e
b <1 59.139 -19.428
C = _ 1b-sec/ft
, -19.428 49,205
7494.0 -5963.8 |
2l K = ' | 1b/ft
E ‘ ' ~5963.8 7520.8
. ’ " T 3.936 ' -0.01177
i’ '; ‘ M= .
| : -0.0058 : 7.878
" 28.74 ~19.52 7]
C =
|-19.52 49.90 |
, ™ 4509 -2970
K =
- | -2970 4511
i S
4.0 0 '}
M =
- theof L_O 8.0 i
- | - 30 -20 ]
.4 ; : theo. _20 50
" " 4500 -3000 ]
| theo. 3000 4500 |

k. : ' 28



Time responses of the system were also investigated, Shown in Figs. 9 and
10 are the velocity time responsés of kl and kz, respecfively, where the
external forces and all other initial conditions are zero except initial
displacement xl(O) = 0.15 ft. Figs. 11 and 12 show the displacement time
responses xl(t), xz(t) when a constant force f2 = 1222.4 ib was applied to mass
2 and the initial conditions were set at xl(O)’= -0.80 ft, x2(0) = +0.80 ft.
Figs; 13 and 14 are thé displacégent time résponses xl(t), xé(ﬁ) when a

constant force f. = 611.6 1b was applied to mass 1 with initial conditions

1
xl(O) = -0.80 ft, XZ(O) = 0.80 ft. Using the time domain eigenvalue retrieving
program, the frequencies, dampings and amplitudes of time response curves for
the 3 stages of damage were found and are shown in tables 5, 6, and 7.

| Normaii;ed damping and stiffness matrices fE], fE] were found.from the
time responses. They are defined as the ratio of the actual damping and-

stiffness matrices to the mass matrices:

The caiculéted [E]; [i] and their corresponding theoretical values for the
three stages of damage are listed below in Table 8.

The results demonstrate that the System Identification Technique using the
timé’domain algorithm also accurately retrieves the [M][C][K] matrices, and

changes simulating damage are detectable.
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§3 « . . Table 5
Frequencies, Dampings and Amplitudes of the
E} i \ : v Time Responses

(1st Stage Damage)

. lst mode 2nd mode
Conditions Freq. (Hz), Damping ratio, Freq. (Hz), Damping Ratio,
Amplitudes Amplitudes

XI(O) = 0.15 ft v

kl(t) 2.47 0.1151 -0.04332 8.03 0.1106 1.2689
gq ‘ iz(t) 2.47 0.1082 -0.04266 - 8.03 0.1058 -0.4881
bod 'x,(0) = -0.80 ft

X2(0) = +0. 80 ft

f; = 611.6 1b

x7 (t) 2.52 0.1135 0.07164 8.04 0.1039 -1.0296

Xy (t) 2.49 0.1102 0.07285 7.99 0.1033 0.4597

Xl(O) = -0.80 ft

x2(0) = +0.80 ft
EH : xl(t) 2.48 0.1118 -0.1370 8.00 0.1029 -0.9267
al X, (t) 2.48 0.1108 ~0.1457 8.00 0.1031 0.4256

0 D

5
B
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m
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s
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Conditions

x;(0) = -0.80 ft
x2(0) = +0.80 ft
£f; = 611.6 1b
Xl(t)

Xz(t)

xl(O) = -0.80 ft
x,(0) = +0.80 ft
fo = 1222.4 1b
Xl(t)

Xz('t)

_Table 6

Frequencies, Dampings and Amplitudeskof the

Freq. (Hz), Damping ratio,

(2nd Stage Damage)

1st mode
Amplitudes
2.46 0.1852
2.46 0.1846
2.46 0.1827
2.45 0.1843

Time Responses

0.08358
0.08270

-0.1293
-0.1456

37

2nd mode

Freq. (Hz), Damping Ratio,

Amplitudes

7.93 0.1558

7.95 0.1562

7.94  0.1555
7.97  0.1531

-1.0148
0.4461

-0.9344
0.4066



Table 7
Fréqueﬁcies, Dampings and Amplitudes of the
"Time Responses

(3rd Stage Damage)

1st mode 2nd mode
"Conditions Freq. (Hz), Damping ratio, Freq. (Hz), Damping Ratio,
Amplitudes Amplitudes
48] . .
b x1(0) = -0.80 ft
x2(0) = +0.80 £t
f1 = 611.6 1b o .
x1(t) 2,47 0.1135 0.1006 5.98 0.1364 -1.0381
x2(t) 2,48 0.1111 0.11167 5.99 0.1349 0.4348
) x1(0) = -0.80 £t
- x9(0) = +0.80 ft
fr = 1222.4 1b
- xl(t) 2.46 0.1137 -0.1086 5.98 0.1359 -0.90167
Xz(t). 2.46 0.1138 -0.1276 5.97 0.1372 0.3837

£ . , 38
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Ist stage 7.73
damage

-2.52
2nd Stage 15.6
damage

—2. 53
3rd stage 7.41
damage

~2.42

o

~-4.57

6.09

-3.98

5.66

-5.16

6.36

Table 8

1865
-732
1873
-738

1119

-369

¥

-1524

933.8

-1515

932.6

-756

560.2

~

Normalized damping and stiffness matrices

~

Ctheo.
-5

6.25

6.25

R

K
theo.

1875 ~-1500
-750 937.5
1875 -1500
-750 937.5
1125 ~750
-375 562.5

These results demonstrate that the System Identification Technique using

the time domain algorithm also accurately retrieves the [M][CI[R] matrices,

and changes simulating damage are detectable.

39



1

B

.
Bl
[

E@
b

:l

i I

6. The Cantilever Beam Experiment
6.1 Experimental Test

A cantilever beam was tegted to verify that the system identification
technique described.in the previous section is equally effective for a
continuous system. The beam, as shown in Figute/lS, was excited with singleﬁ
aﬁd random impéct near the end. ’Six aécelefomefers'weré'attached to’thé beam
at sixvequally-spaced'position._ The transfer functions from the impact

position to any accelerometer position was obtained by feeding the output

acceleration signal and input forcing function into a‘spectrum analyzer: the

Nicolet FFT analyzer. 1In the analyzer, the input and output signals were
digitized and the Fast Fourier ffansform ofbthé signalsvﬁas perférﬁed.' The
instantaneous transfer functions were obtained by dividing the two spectra.
Final transfer function was obtained by averagiﬁg over a series of

instantaneous transfer functions. These transfer functions of various

positions are shown in Figs. 16-21. Damages were introduced to the system.

‘The first damage scenario was a one—-fourth depth saw cut into the edge of the

beam. Close examination of the results indicates that the higher frequency
resonances/residues shift depends on the depth of the saw cut simulating a
crack. The Sjsteﬁ Identification technique can detect the effects of the

simulated cracks by changes in the [M][C][K] matrices.
7. NASTRAN Simulation

To provide a theoretical understanding of the effect of cracks, the N

dynamic behavior of a cantilever beam was studied. The frequeﬁcy responses of

40
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‘the cantilever beam system was simulated with the NASTRAN finite element

program.

Tﬁ; input force was an impﬁlse of .4 millisecond duratiom. The finite
element mesh configuration is shown in Fig. 22. Cracks were simulated by
opening the grid points along the middle line of accelerometer posifions 5 and
6. Three cracks were simulated, each i/8—inch progressivély deeper than the

previous one. The natural frequencies of the first six modes for the no-crack

and the three—crack scenario were calculated and are shown‘in Table 9.

Table 9

Natural frequencies of the beam calculated by NASTRAN

Mode No. No crack 1st crack 2nd crack 3rd crack
1 25.17 Hz 25.10 Hz 24.98 Hz 24,59 Hz
2 157.2 , 156.73 156.67 156.54
3 439.5 437.45 - 437.38 435.83
4 861.1 854.50 852.90 853.87
5 1421.0 1405.90 1401.30 - 1384.80
6 2089.0 2060.60 2055.10 2041.40

When modal damping values were added into the frequency response of the
beam, the transfer functions at six accelerometer position was calculated and
plotted in Fig. 23-28., The added modal damping ratios corresponding to each
mo&e are listed below, Table 10. | ' ‘

| Table 10

Mode No. _ Added Modal Damping Ratio

[ NI S A
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In future research these transfer functions will be used as inputs into
the frequency domain curve fitting program from which eigenvalues and
eigenvéctors will be calculated. Then the system's [M]ICIIR] matrices will be
reconstructed from these eigenvalues and eigenvectors using the developed
system identification technique. It is expected that the results will show

that the crack depth has a detectable effect on the identified system

parameters. Future research will deal with correlating ‘crackage and location

. with observed changes.

8. Conclusions/Recommendations
The feasibility of using structural response data from a known random

input to completely characterize the System Parameters, [MIcllx], has been

demonstrated for discrete spring-mass—dashpot systems. Both the frequency

domain curve_fitting and the time domain curve fitting algo:ithms can give
satisfactory eigenvalues and eigenvectors of the'systeﬁ. When thebsystem's
paraﬁeters are gradually changed the present identification technique is able
to resolve the difference and thus show the feasibility of tracking‘progreSSive
fracture of structural systems.

Preliminary research on a continuous system such as a cantilever beam with
induced cracks (saw cuts) and excited By a random impﬁt, indica#es that the
crack size manifests itself by’detectable changes in the transfer function at
the higher frequency modes. Analyses of the response daté by ﬁhe System
Identification Technique gives promise that the effects of the crack size can
be detected by changes in the [M][C][Klﬁmatricés.k There remains a question of

how many degrees of freedom the [M][Cl[K] matrices should have to represent a
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L  continuous system. When the number of degrees of freedom is largeéu/'

e difficulties will arise concerning the computation accuracy. Therefore the

following recommendations are made:

1. Relate the identified [M][C][K] parameters to localbphysical parameters so
that positional information can also be retrieved.
2. Investigate the numerical accuracy and stability when the number of degrees

of freedom is high, so that the present system identification technique:can

be applied to large structural systems.

M

.

i

g’f“’?"
q

B

{2

i |

57



H

™

-~
B
B
%&ie}"

L |

§e
£

U |

D |

il |

i

B

s

1

B
Y

N |

i1

where

Appendix I
Random Decrement Analysis Identification Algoritim

. The Random Decrement Analysis is a relatively new technioue (22-28),

it can process the response of.a randomly excited‘system to produce

its free response. The free response contains a lot pf useful information
about the system,

The Random Decrement Technique was originally developed by Mr. H. A. Cole
for the measurement of damping and for the detection of structural deteriora-
tion or airplane wings subjected to wind flutter excitation (22, 23). Other
applications have then been studied by Yang-and -his graduate students (24- 28)

Random Decrement technique is a fast-converging method for extracting
meaningful information from random data. It is a process by which segments

~ of the random vibration response of a transducer placed on an object which

is subJected to random excitation are ensemble averaged to form a signature
which is representative of the free vibration decay curve of the structure.
This signature can be used to measure damping or detect incipient failures.
The method is particularly useful in field measurements of structures and

mechanical systems because excitation is provided naturally by such random

inputs as acoustic noise, fluid flow, wing, etc. . ...

~In this section we present a br1ef rather 1ntu1t1ve explanat1on of the
principles of Random Decrement techn1que

The response x(t) of a linear system is governed by the following basic
equatlon'

m%(E) + ¢ - %(t) + k x(t) = #(¢) -y

The solution of this differential equation depends on its initial conditions
and the excitation f(t). Since, for linear systems the superposition law
applies, the response can be.decomposed into three parts: response due to
initial displacement x,(t), response due to initial velocity x (t) and finally
the response due to the forcing function xf(t)

The Random Decrement ana1y51s consists of averaging N segments of the
tength 7, of the system response in the fo]1ow1ng manner: the starting time t
of each segment is selected such that x x_ = constant and the sliope

X, (t ) is alternating positive and nega{1ve Th?s process can be represented
1% mathemat1ca] form:

1 .
a(x) = 2, xgltg+o) | (2)
i=1
= : = | .>3“.. ." L]
xi(tf) = X, i=1, 2,
X = =1,3,5.. ..
Xi(t.r) | z 0 1 'la |
ii(t?) = < i=2,4,6.. ..
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The function &(t) is called the Random Decrement signature and is only
defined in the time interval 0 < t < t,. The meaning of the Random Decrement .
signature can now be determined. ITf t%e parts due to initial velocity are
averaged together, they cancel out because alternately parts with positive
and negative initial slopes are taken and their distribution is random.
Furthermore, if the parts due to the excitation are averaged they also vanish
because, by definition, the excitation is random. Finally only the parts
due to initial displacement are left and their average is the Random Decre-
ment signature representing the free vibration decay curve of the system due
to an initial displacement, which corresponds to the bias level Xg- (Fig. 1)'M

In rea]ity the Rahdomdec'cbmbuter converts each segment into digital

form and adds it to the previous segments (Fig. 2}; the average is then stored

in the memory and can be displayed on a screen. The number of segments to be
averaged for the Random Decrement signature depends on the signal shape,
usually 400 to 500 averages are sufficient to produce .a repeatable signature.

One particularly interesting characteristic of Randomdec technique
should be mentioned: it requires no knowledge of the excitation f(t) as long
as it is random. Neither the type not the intensity of the input affect
the signature. '

For a single-degree-of-freedom system the natural frequency and damping
ratio can be calculated directly from the Random Decrement Signature by the

- logarithmic decrement measurement since the signature is a free vibration

dscay curve of the system. For multi-degree-of-freedom systems where the
modes are well separated these can be determined by bandpass filtering the
response data about the natural frequency first to yield a single-mode
Random Decrement Signature of interest. However, if the principle modes of

a multi-degree-of-freedom system are closely spaced, they cannot be separated
by a filter without distorting the Random Decrement Signature. In such a case
curve fitting is introduced to solve this problem.- This curve fitting program
uses an optimization -algorithm which finds the best combination of natural
frequencies and damping ratios that minimizes the mean square error between

a mathematical function, which describes the response, and the Random Decre-
ment data. :

We plan to use the Random Decrement produced free response of a system
to obtain its eigenvalues. This should be a more accurate way to find the
eigenvalues of systems with high modal density than the standard frequency
response half power point method. '

. A special optimization curve fitting program will be developed for

~ this purpose. The mathematical expression of the free response of linear
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dynamic systems is given by equation (3)
: W, '
xf(t) =a, +i=1 o e s1n(wit-+¢i) ) | (3)

where v, and ¢, are the unknown natural frequency and damping ratio of the
ith modd of thd system. The objective of the Random Decrement curve fitting
program then will be to obtain the proper values of these unknown so that
equation (3) accurately describes the experimental response data.
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Appendix II  Frequency Domain Curve Fitting Method

~ 1. INTRODUCTION

_In 1959, Levy [29.] presented a method for estimating the coefficients of a rational
transfer function expression of a linear system from the measured frequency response.
He suggested the use of the denominator as the weighting on the estimation error and
formulated a linear least square approach to the problem. The drawback of this is
that the emphasis on higher frequency values causes unsatisfactory fit at low frequen=
cies. Sanathanan and Koerner 30l improved Levy's method with an iteration procedure
which effectively eliminates the unfavorable weighting factors introduced into ‘the
‘cost function. Based on the results of 29} and [30), Lawrence and Rogers [31] presented
a recursive algorithm to solve this problem while Jong and Shanmugam [32] presented a
method fitting only the amplitude of the frequency response data. They used the
iteration procedures similar to what Sanathanan, et al. used in [3Q] to remove the
unwanted weighting factors. With this approach all data values are weighted evenly
and the fit is good in both the lower and higher frequency ends. But difficulty can
still be encountered. A transfer function when expressed in partial fraction form can
be characterized by its poles and the associated residues. If the ratio of the resi—
dues corresponding to two poles of the system is substantial, the method used in [30],

[311 and B2 may fail. In this event, the pole with the small residue can disappear
from .the identified eigenvalue table. In order to overcome this problem, a set of new
weighting factors is introduced into the original cost function by iteration, such

' that the new cost function to be minimized is the sum of the squared “"relative”

errors.

2. THEORETICAL DEVELOPMENT

The relation between the ideal and the measured ffequency response of a system can

 be expressed in the following equation

g(iw) - z(jw) = e(Juw) (1)

where z(jm) is the measured data,'s( jw) is the measurement mnoise and g(jw) is the
ideal frequency response. 1f the system is linear, it is common to assume that the
transfer function can be written as

31+a2(5m5+...+an+1(3m)n' aCiw) ‘(25
g(jw) = el &™)
by+ba( Ju)+. .« +bp( Jw)B I+ ju)® -
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Given a set of measurements, z(juwg) = ayx *+ 3Bk, (k = 1,2,...,8), and assuming that n
and m are known (n < m), the problem of jnterest here is to estimate coefficients aj
and by .in (2) by minimizing some cost function of £(jwy). Combining Eqs. (1) and

(2), one can obtain

N |

n(juy) - lax + 3Bkled(iug) = e jug ) d(iwy) (k=1,2,...,s) 3

With the definition of the following

X = [al 32 PR an+1 hl b2 as e bm]
. .0 1 ,, 2 ) T .
Pk = [Cduk) (Jwx)d (Jug)™ e-- (ka)“] = pgr + JPkI

e = [G® Gob Gup? - God)™ 11T = qer + dair

(3) can be conveniently rewritten in a matrix form as

Eq.
Mex - v = ek (k=1,2,..0,8) O]
i - where :
= G L
R B ittt 2x(mHmHl)
T ! < a T T
PKI™ k9kI" - BkaxRr
 [Rel(oxt3810+ (™)
yk - 'wk
Im[(apt+iBg)* ("]
2x1
g7 Refe(jug)*d(jwg)]
éj’ : ‘ .oex =
Infe(juwg)d(3uwg)]
2x1
Eq. (4) can be further condensed and written as
Ax —y=e (5)
~ g
[
k)

where
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X = [le sz cos ykT o ysT]

. ‘ .
e = [e1T T ... el .o eST]

Withbleast-sqtéfé approach one can find the best estimate of x for Eq. (5) that mini-
mizes the following cost function

Eo = |le]] =k21 |e (e dd o) | (e

is

T,\-1,T
= (A"A) Ay : v (7)
This is, in fact, the same result as what Levy got in [2].
Instead of eliminating the weighting féctors, d( jwy) in Eq. (6) as what others do
[3-5], a new set of weighting factors is introducted here into Eq. (6) through itera-

tions. The procedure is as follows.

1. Let n(jwy);, and d(jwy), be the values of n(ka) and d(ka), tespectively,
based on the estimate of x in the L-th iteration.

2. Replace n(gwk) and d(jwyg) with n(Jmk) and d(ka)L, respectively, in Eq. (3)
and divide both sides by n(ka) to yield

n(jwk)L -vZ(jwk)d(jwk)L E(jwk)d(jwk)L

= ' (8)
[nCiog);_, | InCiuwkd; _, |

3. Rewrite eqn. (8) in matrix form as

DAgxy, = Dpyk = Dgeg (k=1,2,...,s) (9)

where V
1
Dy = —mm™™——————— 1 0 (k=1,2,...,s)
laCgwe); _, | 0 1 o

4. Combine all equations in Eq. (9) together in the following matrix equation,

DAx, = Dy = De o ’ ' o (10)
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where
P — —
i Dy 0
' L]
‘J‘ .
' D = Dy

el

»

5. Formulate the new cost function as

s

m , 2 . . 2

E Ep = [pel|” = I Je(iupdd(iwe); /nCiopd; | (11)
- k=1

m : : . :

EJ 6. Obtain the best estimate of x;, for the L-th iteratiomn

x = (ATQA) ATqy (12)

where Q = DTD = D2

To initiate ﬁhe‘procedure, or equivalently for L = 1, one can assume ]n(jwk)ol = 1,
which will give Levy's result of aj's as the result of the first iteration.-

3. EXAMPLE
A numerically generated example is described in the following.

e An 8th order system with system coefficients given in Table 1 is used to test the
algorithm. Also included in Table 1 are the poles and residues associated with the
partial fraction expression of the system transfer function, and the damping ratio
associated with the complex poles. Frequency response data are numerically generated
according to Eq. (2) with the system coefficients in Table 1. The resulted real and
imaginary parts of this set of data are plotted and shown in Fig. 1. Alternatively,
the magnitude and phase angle can be obtained, and they are displayed in Fig. 2.

The system coefficients determined with the new algorithm on the generated—data
are listed in Table 2 which also includes residues, poles and dampings. The frequency
response data generated with the fitted coefficients are shown in Figs. 3 and 4.
Evenly weighted algorithm which was introduced by Sanathanan and Koerner [30} is also
applied to fit the data. The system coefficients so identified are listed in Table 3
while the corresponding response data can be seen in Figs. 5 and 6.
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The frequency response data are free from any noises other than the numerical
truncation errors. It is quite obvious from Tables 1, 2 and 3 that with the new
algorithm the fdentified system coefficients are almost identical to the exact ones
while with the other algorithm the coefficients are completely different. The
substantial difference between the coefficient sets, however, does not cause the fre-
quency response curves to be drastically different as can be seen in Figs. 3 and 5 or
in Figs. 4 and 6. Both frequency responses are very similar to the exact ones that

- are shown in Figs. 1 and 2. The poles of the system are all complex conjugates and

the ones identified with the new algorithm are almost identical to them as can be
learned from Tables 1 and 2. 1In the same tables, one can also see that the residues
are very similar for all the poles. 1In Table 3, it can be seen that the poles iden-—
tified with the other algorithm are different than those in Tables 1 and 2. The major
distinction between the two identified curves is the feature around 400 rad/sec as can
be seen from comparing Figs. 1, 3 and 5. The more pronounced difference is easily
spotted in the phase angle curves shown in Figs. 2, 4 and 6. The poles not found with
Sanathanan and Loerner's algorithm are the third complex conjugate pair of which the
imaginary part is 406.7. This number corresponds to the frequency in rad/sec around
which the distinction between the identified curves is most prominent. '
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A( B)=

-.1684+17
-.5412+10
~.5232+03

AC 1)=

A( D=

3227419
.1287+13

B( =
B( 4)=

'RESIDUES:

.1097-03 .7020-02
.1097-03 -.7020-02
-.1419-01 .3411400
-.1419-01 -.3411+00
.2352-02 .4493-02
.2352-02 -.4493-02
-.1976-01 .2301+00
-.1976-01 -.2301+00

A( 1)= -.1688+17
A( 4)= =-.5365+10
A( 7)= =.5242+03
B( 1)=  .3229+19
B( 4)=  .1282+13

.9774+06

B( 7)=

.1502-03 .7001-02
.1502-03 -.7001-02

-.1401-01 .3419+00
~.1401-01 -.3419+00
.2352-02 .4489-02

.2352-02 -.4489-02

~.2069-01 .2305+00
-.2069-01 -.2305+00

COEFFICIENTS OF NUMERATOR:

A( 2)= -.4844+14
A( 5)= -.1871+09
A( 8)= -.6298-01

COEFFICIENTS OF DENOMINATOR:

B( 2)=  .1008+17
B( 5)= .1556+12
POLES:
-.13674+01 .3082402
-.1367+01 -.3082+02
-.26474+01 .1616+03
-.2647+01 ~-.1616+03
-.3087401 .4067+03
-.3087401 -.4067+03
-.4554+01 .8858+03
-.4554401 -.8858+03
Table 1.

COEFFICIENTS OF NUMERATOR:

A( 2)= -.4829+14
A( 5)= -.1875+09

A( 8)= -.6440-01

COEFFICIENTS OF DENOMINATOR:

B( 2)=  .1009+17

B( 5)=
B( 8)=

.1368401
.1368+01
.2624401
.2624401
.3104401
.3104401
4578401
-.4578401

.1556+12
.2335+02

.3083+02
-.3083+02
.1616+03
-.1616+03
.4067+03
-.4067+03
.8858+03
-.8858+03

A(
A(

B(
B(

Exact System Coefficients

A(
A(

B(
B(

3)=
6)=

3)=
6)=

3=
6)=

3)=
6)=

-.1641+14
-.3842405

.3540+16
. 1447408

DAMPING:

.4430-01
.4430-01
.1638-01
.1638-01
.7591-02
.7591-02
.5141-02
.5141-02

-.1645+14
-.3837405

.3540+16
. 1447408

.4434-01
.4434-01
.1623-01
.1623-01
.7633-02
.7633-02
.5168-02
.5168-02

Table 2. Identified System Coefficients-New Algorithm
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A 4)=

A( )=

A( )=

B( 1)=
B( 4)=
B( 7)=

.4485-04
.4485-04
.8224-03
.8224-03

- -.1563-01

-.1563-01
-.2022-01
-.2022-01

-.2683+16

1154+10
5203403

.5154+18
.2564+12
.8384+06

.6993-02
-.6993-02
.1357-02
-.1357-02

.3405+00

-.3405+00
.2305+00
-.2305+00

COEFFICIENTS OF NUMERATOR:

A( 2)= -.7861+13
A( 5)= -.1121409
A( 8)= -.6997-01

COEFFICIENTS OF DENOMINATOR:

B(.2)=
B( 5)=
B( 8)=

-.1371401
-.1371401
-.4770+00
-.4770+00
-.2653+01
-.2653401
-.4576+01
~.4576+01

.1617+16
4277+11
.1815+02

.3080+02
-.3080+02
.1626+03
~.1626+03
.1616+03
-.1616+03
.8858+03
-.8858+03

A( )=
A( 6)=

B( 3)=

B( 6)=

-.2704+13
-.3126+05

.5825+15
.7870+07

4448-01
L4448-01
.2933-02
.2933-02
.1641-01
.1641-01
.5165-02
.5165-02

Tablé_3. Identified System Coefficients - Sanathanan and Koerner

Algorithm
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